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1. INTRODUCTION

THE PROBLEM OF FLUID flow through flexible pipes has received a good deal of attention in
the research literature. Paidoussis & Issid (1974) introduced the basic governing
differential equations, where it was shown that the system could be subjected to both
divergence and flutter instabilities. Laura et al. (1987) investigated bending motion of a
simply supported pipeline conveying fluid using a power series method to solve the
associated governing equations. Mishra & Upadhyay (1987) used a cylindrical shell model
to account for the rotary inertia and shear deformation effects. Concerning system
optimization, Borglund (1998) formulated the minimal structural-mass design problem for
a fixed critical flow speed. Analysis was performed using the finite element method to solve
the associated equation of motion of a cantilevered configuration.

Based on the fact that an exact solution for a uniform pipe is available and well
established, this study presents a mathematical model for determining the exact critical
flow velocity of a pipeline composed of uniform modules. Design parameters include the
wall thickness and the length of each module. As a case study, the developed model is
applied to a simply supported pipeline consisting of two, three, and more modules. Clear
design charts are given showing the functional behavior of the critical flow velocity with
the selected design parameters.

2. ANALYSIS AND MATHEMATICAL FORMULATION

For the kth module of the pipeline shown in Fig. 1, the governing differential equation for
the case of static instability (Paidoussis & Issid 1974) can be cast in the following non-
dimensional form:

A UA
W 2w =0, g = Usy /I—" = k=1,2,..., Nm, (1)

VA

which is valid over the entire module length, i.e., 0 < X < Lj, where X = x — x;. It is
noted that UgAdr = UA; w is the bending deflection, U the critical flow velocity, A4 the
maximum cross-sectional area, and N,, the total number of modules composing the
pipeline. The various parameters are nondimensionalized by the associated values of a
reference uniform pipe having the same total length and material properties (see Table 1).
Equation (1) has an exact solution of the form

w(xX) = By + Byx + Bj sin A X + B4 cos /X, (2)

0889-9746/02/050685 + 06 $35.00/0 © 2002 Elsevier Science Ltd. All rights reserved.



686 K. Y. MAALAWI AND M. A. ZIADA

oY

(a) >

— T > > Uy, 21—
(K) (K+1)
Ly
® T

(©

Figure 1. General configuration of a tubular pipe conveying fluid: (a) continuous model; (b) discrete multi-
module model; (c) equilibrium of an element dx.

TABLE 1

Nondimensional quantities

Quantity Notation Nondimensionalization*
Axial coordinate X x « x/L,

Module length Ly Ly « Li/L,

Wall thickness I te < tre/1,

Mean diameter Dy Dy < Di/D,
Cross-sectional area Ai(= nD?/4) Ak < Ar/A,(= D})
Second moment of inertia  [i(=x nD;1;/8) I « It /1,(= Ditk)
Transverse displacement w we—w/L,

Bending moment M M « M"(L,/EIl,)
Shearing force F F « F(L/EL)

Axial flow velocity U, Uy < UZ(,OA(,Lz/EIU)l/2
Structural mass M M; « M;/M, (: ,’:’;’1 DktkLk)

"Reference values: L, = length, 7, = wall thickness, D, = mean diameter, 4, = nD% /4,
I, ~ nD3t,/8, M, = pipe mass = ppDotyL,, p = fluid density, p, = material density,
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where the B;s are constants to be determined by applying appropriate boundary
conditions.

Applying the transfer matrix technique (Nagai & Hayama 1991), the state vector, Z; , at
any joint (k) within the pipeline is defined as follows:

Z, =[w, o, M, Fl, = [w, —wW,—Iw", —Iw"],. (3)

At two successive joints (k) and (k + 1) the state vectors are related to each other by the
matrix equation

Zk+1 == [Tr]kZ/(: (4)

where [T,], is a square matrix of order 4 x 4 known as the transmission or transfer matrix
of the kth module. The final derived form is

Sk ,
1 —Lk (Ck — 1)/1](/112( ()/I: — Lk) /Ik/“i
)= |0 1 Si/Tex (1= Co/lii |, ()
0 0 Cr Sk/ Ak
0 0 _)»kSk Ck

where Cy = cos ALy and Sy = sin 4 L. For a pipeline built from »,, uniform modules,
equation (4) can be applied at successive joints to obtain

ZN/71+] = [T]Zl’ (6)

where [T] is called the overall transmission matrix formed by taking the products of all the
intermediate matrices of the individual modules. Therefore, applying the boundary
conditions and considering only the nontrivial solution, the resulting characteristic
equation can be solved for the critical flow velocity. The main focus of the present study
will be on the case of simply supported pipelines. The more general case of an elastically
restrained pipeline will be investigated in detail by the authors in a future study.

3. APPLICATIONS AND COMPUTATIONAL RESULTS

For a simply supported uniform pipeline consisting of one module, the nondimensional
critical flow velocity is given by U = n1/D;t;. It is obvious that there is no way to increase
U above its principal value of © without the penalty of increasing the structural mass
(MX = Dltl)'

Figure 2 shows the functional behavior of the critical flow velocity of a two-module
model having unit nondimensional diameter and structural mass (i.e., the pipe model has
the same diameter and mass as that of the reference design). It is seen that the absolute
maximum value of the critical velocity is close to 3-238 (> n), where the optimum design
point is (¢, L) = (0-39, 0-135), (1-095, 0-865).

Several other cases of study have been implemented and investigated. Results indicated
that, for a simply supported pipeline, good patterns must be symmetrical about the mid-
span point. Therefore, it can be easier to cope with symmetrical configurations, which
reduce computational effort significantly, and the total number of design variables to half.
In this case, the boundary conditions become w(0)=w"(0)=0 and w(1/2)
=w"(1/2) =0, and the associated characteristic equation for calculating U takes the
form [refer to equation (6)]

T2Tas — ToaTar = 0. (7
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Figure 2. Behavior of the critical flow velocity for two-module model.

Figure 3 depicts the optimum zone of a symmetrical three-module model having a unit
nondimensional diameter and structural mass.

The final results for symmetrical patterns are summarized in Table 2, where the
subscript s refers to symmetry about the mid-span point. It is important to mention here
that the resulting optimal solutions depend significantly on the preassigned lower limits
imposed on the wall thickness of the pipeline. Such limits are usually related to
considerations of local instability that might be caused by buckling.

4. CONCLUSIONS

The functional behavior of the critical flow speed through a simply supported multi-
module pipeline is investigated in detail. The effective design variables are chosen to be the
wall thickness and length of each module. Extensive computer implementations have
proved that the critical speed, even though an implicit function of the design variables, is
well behaved, monotonic and defined everywhere in the selected design space, which
ensure the exact determination of the static stability boundary. A useful conclusion is the
possibility of selection of the module length as a main design variable. Investigators who
employ the finite element method ignore this variable. Good symmetrical configurations
have shown that the wall thickness ought to decrease near the boundaries, while it takes
the maximum allowable values at the middle portion of the pipeline. Results have also
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Figure 3. Optimum zone for symmetrical three-module model.

TABLE 2
Optimal patterns of simply supported pipelines

N [(lka Lk)] Unmax Gain (OA))
3 [(0-45, 0-15625), (1.25, 0-34375)], 3-3590 69
5 [(0-25, 0-075), (075, 0-15), (1-3409, 0-275)], 3-4121 8-6
7 [(0-15, 0-05), (0-5, 0-075), (0-9, 0-125), (1-37, 0-25)], 34332 9.3

indicated that the increase in the number of modules results in higher values of the critical
flow speed, and consequently, the overall stiffness level. However, care should be taken
for the increased cost of connections. Finally, the present exact analysis saves much of
the computer time required by the finite element and other discretized approximate
methods.
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